AD: 35 waterstoftaxi’s kondigen ‘nieuw tijdperk’ aan

De taxivloot voor het WMO-vervoer in Den Haag.
De taxivloot voor het WMO-vervoer in Den Haag. © Toyota

Auto’s op waterstof zijn al jaren een belofte, maar in Den Haag rijden er inmiddels tientallen rond. Een groot deel van het WMO-vervoer wordt er sinds kort gedaan met waterstoftaxi’s. En er komen nog veel meer waterstofauto’s in die regio nu er een waterstoftankstation opent na de zomer.

Noot Personenvervoer won de aanbesteding van de gemeente om de taxiritten voor de Wet Maatschappelijke Ondersteuning CO2-neutraal uit te voeren. Toyota heeft het bedrijf 35 exemplaren van de Toyota Mirai geleverd.

Een waterstofauto is ook een elektrische auto, maar dan zonder de loeizware accu’s. De Mirai maakt de elektriciteit zelf uit waterstof. Groot voordeel: tanken kost net als bij een benzineauto maar een paar minuten en de actieradius is vergelijkbaar met een brandstofauto. Groot nadeel: Er zijn nog nauwelijks waterstofstations in Nederland. 

Voorlopig moeten de Haagse taxi’s naar Rhoon om te tanken, maar de Haagse ondernemer Jan Paul Kerkhof opent na de zomer een waterstoftankstation bij zijn BP-benzinestation. ,,Dan komen die 35 taxi’s hier om te tanken. En in de regio staan er 125 Hyundai Nexo waterstofauto’s in bestelling die begin 2020 geleverd worden, die hier óók komen tanken. Het aanbod dat ik bied creëert de vraag. Ik had niet kunnen durven dromen dat we zo’n mooie start zouden hebben.’’ Kerkhof gaat groen waterstof (geproduceerd door elektrolyse uit groene stroom) verkopen.

Groener dan groen

Waterstofauto’s zijn groener dan groen: waterstof erin en uit de uitlaat komen slechts wat druppels water en een wolkje stoom. Toyota en Hyundai geloven er heilig in. Toyota wil de productie de komende jaren vertienvoudigen en komt voor de Olympische Spelen in Tokyo met een nieuw model waterstofauto. De grote Duitse automerken werken eveneens aan een waterstofauto. Ook Bosch, de grootste toeleverancier voor de autoindustrie ter wereld, kondigde dit voorjaar aan op grote schaal brandstofcellen (het hart van de waterstofauto waar waterstof wordt omgezet in water en elektriciteit) te gaan produceren. Ieder automerk kan daardoor over een paar jaar een waterstofauto bouwen zonder de torenhoge ontwikkelingskosten. Waterstof wordt vooral gezien als een alternatief voor diesel.

Nieuw tijdperk

Ad van Wijk, Professor Future Energy Systems aan de TU Delft: ,,Ik ben ervan overtuigd dat we straks in ons dagelijks leven niet meer ontkomen aan het gebruik van waterstof in uiteenlopende sectoren zoals mobiliteit, industrie, elektriciteit en verwarming. Door het opschalen van waterstoftoepassingen kunnen we de maatschappij sneller decarboniseren. De stap die de gemeente Den Haag nu met deze taxivloot zet, is een belangrijk signaal richting dit nieuwe tijdperk.’’

Dit artikel verscheen eerder op ad.nl
Schrijver: Ton Voermans 24-06-19, 07:00 

Waterstof Challenge: Op waterstof door Europa rijden, hoe ver kom je dan?

Ruim twintig teams uit Nederland, Finland, Duitsland en België zijn bezig met een 24-uurs-rit door Europa in een waterstofauto. Daarmee vragen ze aandacht voor waterstof als milieuvriendelijk alternatief voor benzine en diesel. Gisteren vertrokken de teams vanuit Waddinxveen voor de vierde editie van de Waterstof Challenge. Vanmiddag worden ze terugverwacht.

Het gaat er niet om wie de snelste is. De deelnemende teams – van bijvoorbeeld Rijkswaterstaat, bouwconcern BAM en de gemeente Groningen – kunnen punten verdienen door kilometers te maken, tankstations te vinden, zoveel mogelijk landen aan te doen en specifieke locaties te bezoeken en te fotograferen zoals de Eiffeltoren in Parijs of het stadhuis van Hamburg.

Arjan de Putter is bedenker van de wedstrijd: “Er is in ons land natuurlijk heel veel aandacht voor elektrisch rijden. Dat is mooi, maar rijden op waterstof verdient ook aandacht. Want ook waterstof is een prima alternatief voor benzine en diesel.”

JEROEN SCHUTIJSER/ NOS

Kip-ei-verhaal

Waterstof staat in ons land nog in de kinderschoenen. Nederland telt op dit moment 60 auto’s die op waterstof rijden en het aantal tank-mogelijkheden staat op welgeteld drie. “Als die infrastructuur zo achterblijft, hebben grote automerken natuurlijk ook geen zin om dat soort auto’s in ons land te verkopen”, zegt Ad van Wijk, professor toekomstige energiesystemen aan de TU Delft. “Een soort kip-ei-situatie dus.”

De Duitsers zijn volgens hem al een stuk verder. “Bij onze oosterburen zijn nu 70 tankstations en binnen een aantal jaren komen er 400 voor waterstof bij. Duitsers zijn daarin toch sneller en slimmer. Ze zijn gewoon samen om de tafel gaan zitten om een plan op te stellen. Bij ons is de ontwikkeling vooral ontstaan door subsidiebeleid. Allerlei kleine partijen die iets willen opzetten. Maar daar bouw je natuurlijk geen dekkend netwerk mee.”

Overigens worden er op verschillende plekken in het land momenteel nieuwe tankstations gebouwd, zoals in Den Haag, Groningen, Arnhem en Utrecht. “En er zijn dit jaar al 300 waterstof-auto’s besteld. Het begint echt wel ergens op te lijken”, aldus De Putter.

Vooral voor zwaar vervoer

Waterstof kan als energiedrager een alternatief zijn voor diesel en benzine voor vrachtwagens, bussen, boten en automobilisten die heel veel rijden. “De auto’s rijden wel elektrisch, maar de generator wordt aangedreven door waterstof”, zegt een van de deelnemers van Rijkswaterstaat vlak voor de start van de challenge.

“De winst is dus dat je geen grote batterijen aan boord hoeft te hebben. Als je de waterstof in een tank in de auto kunt opslaan, is dat dus je bron van energie. In plaats van batterijen. Batterijen zijn milieu-vervuilend, duur om te maken en groot en zwaar om mee te nemen. Vooral voor vrachtauto’s is waterstof een uitkomst. Die hoeven niet een hele aanhanger met batterijen mee te nemen.”

Dit artikel verscheen oorspronkelijk op nos.nl

50% Hydrogen for Europe: a manifesto

May 7, 2019 by Frank Wouters and Ad van Wijk Leave a Comment

Electricity has well known limitations, mainly for bulk and long-range transportindustrial processes requiring high temperature heat, and the chemicals industry. To entirely replace fossil fuels we need hydrogen, say Frank Wouters and Prof. Dr. Ad van Wijk. It has an energy density comparable to hydrocarbons. There’s more: Europe’s electric grid can’t cope with 100% electrification, yet hydrogen would use the existing gas pipe networks. The authors lay out a plan to deliver 50% of Europe’s energy from hydrogen by 2050. Done rapidly at scale, hydrogen would soon be as cheap as gas. It will also make Europe the hydrogen market leader: what technologies Europe (or anywhere!) masters first, it can sell to the rest of the world hungry for clean energy solutions.

Electrification is one of the megatrends in the ongoing energy transition. Since 2011, the annual addition of renewable electricity capacity has outpaced the addition of coal, gas, oil and nuclear power plants combined, and this trend is continuing. Due to the recent exponential growth curve and associated cost reduction, solar and wind power on good locations are now often the lowest cost option, with production cost of bulk solar electricity in the sunbelt soon approaching the 1 $ct/kWh mark. However, electricity has limitations in industrial processes requiring high temperature heat, the chemicals industry or in bulk and long-range transport.

Green hydrogen made from renewable electricity and water will play a crucial role in our decarbonised future economy, as shown in many recent scenarios. In a system soon dominated by variable renewables such as solar and wind, hydrogen links electricity with industrial heat, materials such as steel and fertiliser, space heating, and transport fuels. Furthermore, hydrogen can be seasonally stored and can be transported cost-effectively over long distances, to a large extent using existing natural gas infrastructure. Green hydrogen in combination with green electricity has the potential to entirely replace hydrocarbons.

Energy demand in Europe

Europe is a net energy importer, with 54% of the 2016 energy needs met by imports,consisting of petroleum products, natural gas and solid fuels. Although Europe is working ambitiously to become less dependent on energy imports, it is unlikely that Europe can become entirely energy self-sufficient. Most scenarios, including BP’s Energy Outlook 2019[1] indicate that Europe shall remain a net importer of energy until mid-century and beyond.

Several recent scenarios exist for Europe’s energy system in 2050, including Shell’s Sky Scenario[2], The Hydrogen Roadmap for Europe[3]DNV-GL’s Energy Transition Outlook 2018[4] and the “Global Energy System based on 100% Renewable Energy – Power Sector” by the Lappeenranta University of Technology (LUT) and the Energy Watch Group (EWG) [5]. But also, several renewable energy industry associations have assessed the role of renewable energy in the European energy mix by 2050, among which are EWEA[6] and GWEC[7]. Analysing and comparing these scenarios, an estimated 2,000 GW of solar and 650 GW of wind energy capacity is required to decarbonise Europe’s electricity sector by 2050, generating roughly 3,000 TWh of solar energy and 2,000 TWh of wind energy per year. Europe’s final energy demand in 2050 is estimated to be around 10,000 TWh and 50% would then be covered by electricity from solar and wind. In most scenarios, additional electricity is generated by nuclear and hydropower.

Final energy mix in Europe (2015). SOURCE: Eurostat

Hydrogen in Europe

Green hydrogen can be produced in electrolysers using renewable electricity, can be transported using the natural gas grid and can be stored in salt caverns and depleted gas fields[8] to cater for seasonal mismatches in supply and demand of energy. It should be noted that blue hydrogen, hydrogen produced from fossil fuels with CCS, can play an important role in an intermediate period, helping kickstart hydrogen as an energy carrier alongside the introduction of green hydrogen.

Using existing gas infrastructure

In Europe the lowest cost renewable resources are hydropower in Norway and the Alps, offshore wind in the North Sea and the Baltic Sea, onshore wind in selected European areas, whereby the best solar resource is in Southern Europe. The current electricity grid was not built for this, is not fit for the energy transition and needs to be drastically modernised. In 2018, an estimated € 1 billion worth of offshore wind energy was curtailed in Germany due to insufficient transmission grid capacity.

In addition, the development of new renewable energy capacity is slowed down due to the lack of grid capacity. Unfortunately, overhead power lines are difficult to realise due to environmental concerns, popular opposition and typically take more than a decade for planning, permitting and construction. However, a gas grid is much more cost-effective than an electricity grid: for the same investment a gas pipe can transport 10-20 times more energy than an electricity cable. Also, Europe has a well-developed gas grid that can be converted to accommodate hydrogen at minimal cost. Recent studies carried out by DNV-GL[9] and KIWA[10] in the Netherlands concluded that the existing gas transmission and distribution infrastructure is suitable for hydrogen with minimal or no modifications.

So instead of transporting bulk electricity throughout Europe, a more cost-efficient way would be to transport green hydrogen and have a dual electricity and hydrogen distribution system. Picture 2 shows the existing European natural gas grid (blue) and a hydrogen backbone (orange) as suggested by Hydrogen Europe and Delft University.

Picture 2: Natural gas infrastructure in Europe (blue and red lines) and first outline for a hydrogen backbone infrastructure (orange lines) [Delft University of Technology, Hydrogen Europe, 40GW Electrolyser Initiative]

A different approach: top down, not bottom up

By 2050 when Europe’s electricity system is largely based on variable renewables, hydrogen is indispensable. Several scenarios have tried to estimate the increasing demand for hydrogen in Europe over time and all of them use a bottom-up approach. Although there is merit in this approach by applying industry’s collective knowledge and a deep-dive in these sectors, the fundamental flaw lies in the fact that at present there is no market for green hydrogen, and it is therefore very difficult to estimate e.g. adoption rates for fuel cell vehicles or the willingness among consumers to choose between green gas or all-electric solutions for their domestic energy needs.

A more ambitious approach based on infrastructure development is proposed, similar to the introduction of electricity or natural gas. The fundamental philosophy is to make green hydrogen available at scale and cost-effectively and replace fossil fuels as quickly as possible by repurposing the current natural gas infrastructure to carry green hydrogen. Since the transmission and distribution infrastructure is already to a large extent available, the focus can be on developing electrolyser capacity, which is an opportunity for European market leadership.

How much hydrogen do we need or want?

65% of Europe’s current final energy demand consists of gas, coal and petroleum products, which can all be replaced by hydrogen and electricity. We therefore propose a 50% share of green hydrogen in Europe’s final energy demand for all sectors: industry, transport, commercial and households. Of course, this is a rough estimate and will differ per sector and country. It is doable in the transport sector, achieving a balanced mix of battery electric mobility for shorter distances, combined with fuel cell vehicles for heavy duty, longer ranges and higher convenience.

Share of EU Final Energy use per sector (2017). SOURCE: Eurostat

Most industrial high heat demand, currently served by natural gas, can be provided by hydrogen, and the household sector will consist of a mix of all-electric well-insulated new houses, while a large part of the existing building stock can be heated using hydrogen fuel cells and hydrogen gas boilers. Including the hydrogen required for power system balancing, this represents an overall hydrogen demand of 6,000 TWh/year, which can easily be accommodated by the European natural gas grid.

The green hydrogen will be produced by additional green electricity plants in Europe over and beyond the 2,000 GW solar and 650 GW wind capacity, in addition to blue hydrogenmade from natural gas whilst capturing and storing the CO2. However, 50% of the demand will be imported from neighboring regions in North Africa and the Middle East where green hydrogen can be produced cheaply and transported through cost-effective pipelines. Additional green hydrogen can be imported in liquid or ammonia form from additional sources further away, like LNG nowadays. Europe’s import dependency will be roughly cut in half, and since hydrogen can be produced almost anywhere, the supply risk profile will be much improved.

Cost competitive hydrogen

Renewable electricity is rapidly becoming cheaper than conventional electricity made in nuclear, gas- or coal-fired power plants. If a market would develop along the lines sketched here, hydrogen can be produced at € 1 per kg, which is compatible with natural gas prices of €9/mmbtu. Since the energy content of 1 kg of hydrogen is equivalent to 3.8 litre of gasoline, it is certainly cheaper than gasoline or diesel at that price point. But the main advantage lies in the infrastructure, the proposed transition would to a large extent use the existing natural gas grid and would avoid an expensive and troublesome complete overhaul of the electricity grid.

Action agenda

A European energy system based on 50% green electricity and 50% green hydrogen as described above would have many advantages: reduced emissionsreduced price volatilityindustrial opportunityavoidance of stranding gas grid assets and increased resilience.

The following are necessary considerations for an action agenda:

  • A strong, clear and lasting political commitment is necessary, embedded in a binding European strategy with clear goals stretching over several decades.
  • A new type of public private partnership on a pan-European level must be crafted, with the aim to create an ecosystem to nurture a European clean energy industry that has the potential to be world leaders in the field. This partnership should include the existing energy industry, as well as innovative newcomers.
  • A novel enabling regulatory environment and associated market design is required for the necessary investments, whilst keeping the system costs affordable.

This implies that Europe needs to:

  1. Develop a common internal market for hydrogen
  2. Develop an internal market for power to hydrogenhydrogen to power and storage + flexibility
  3. Expand the public electricity infrastructure and make it fit for the 21st century
  4. Convert the public natural gas infrastructure into a public hydrogen infrastructure
  5. Develop large scale hydrogen storage facilities in salt caverns and depleted gas fields
  6. Expand large scale green electricity production through national and EU auctions for renewable electricity
  7. Stimulate large scale green hydrogen production through national and EU auctions for renewable hydrogen
  8. Until 2035: stimulate large scale blue hydrogen (hydrogen made from fossil fuels whereby the CO2 is captured and permanently stored) production through national and EU auctions in parallel to green hydrogen deployment
  9. Between 2035 and 2050: switch rapidly to a system 100% based on renewable electricity and green hydrogen.
  10. Develop a modern, innovative, competitive and world leading economy on green electricity and green hydrogen as energy carriers and feedstock.

***

Frank Wouters is a former Deputy Director-General at IRENA. For a full CV click here.

Prof. Dr. Ad van Wijk is sustainable energy entrepreneur and part-time Professor Future Energy Systems at TU Delft, the Netherlands. For a full CV click here.

This article originally appeared at: https://energypost.eu/50-hydrogen-for-europe-a-manifesto/

CITATIONS:

  1. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2019.pdf 
  2. https://www.shell.com/energy-and-innovation/the-energy-future/scenarios/shell-scenario-sky.html 
  3. https://fch.europa.eu/sites/default/files/Hydrogen%20Roadmap%20Europe_Report.pdf 
  4. https://eto.dnvgl.com/2018/ 
  5. http://energywatchgroup.org/wp-content/uploads/2017/11/Full-Study-100-Renewable-Energy-Worldwide-Power-Sector.pdf 
  6. http://www.ewea.org/fileadmin/files/library/publications/position-papers/EWEA_2050_50_wind_energy.pdf 
  7. http://files.gwec.net/register?file=/files/GlobalWindEnergyOutlook2016 
  8. https://forschung-energiespeicher.info/wind-zu-wasserstoff/projektliste/projekt-einzelansicht/74/Wasserstoff_unter_Tage_speichern/ (in German) 
  9. https://www.topsectorenergie.nl/sites/default/files/uploads/TKI%20Gas/publicaties/DNVGL%20rapport%20verkenning%20waterstofinfrastructuur_rev2.pdf(in Dutch) 
  10. KIWA – Toekomstbestendige gasdistributienetten – GT170227 (July 2018 – in Dutch) 

FIDEO: Hat wetterstof de takomst yn enerzjy?

Wetterstof kin in grutte rol spylje by de enerzjy-oergong, tinke saakkundigen. Wetterstof is sels gjin enerzjy. It wurdt makke mei elektrisiteit en it is in wize om enerzjy op te slaan. Wetterstof kin bymingd wurde by gas yn ferwaarmingstsjettels. In bedriuw yn Ljouwert ûntwikkelet sokke spesjale tsjettels.

480p geselecteerd als afspeelkwaliteit720p geselecteerd als afspeelkwaliteit00:00 | 02:26

By Tieluk op yndustryterrein De Swette yn Ljouwert binne se al in pear jier dwaande mei de ûntwikkeling fan ferwaarmingstsjettels dy’t foar in grut part draaie op wetterstof. De apparaten fan Tieluk wekke wetterstof op en minge dat by yn ferwaarmingstsjettels op gas dy’t ûnder oaren brûkt wurde yn appartemintekompleksen en yn swimbaden.

Wetterstof goedkeaper as folslein elektrysk

It bedriuw Remeha yn Apeldoorn is ien fan de klanten fan Tieluk. De produsint fan ferwaarmingstsjettels is dwaande om tsjettels foar partikulieren geskikt te meitsjen foar wetterstof. De earste wurdt ynkoarten ynstallearre yn Rozenburg. Tsjettels op wetterstof is in logyske stap, fynt Remeha. It is folle goedkeaper as oergean op folslein elektryske enerzjy. Dat kostet folle mear as it oanpassen fan it gasnetwurk dat der dochs al leit.Foto: Omrop Fryslân, Gerrit de Boer

Wetterstof is sels gjin enerzjy. It wurdt makke mei elektrisiteit en is in wize om enerzjy op te slaan. Dat is mei elektrisiteit út sinneskyn en wynenerzjy in probleem. As der gjin sinneskyn of gjin wyn is, is der ek gjin enerzjy. En as der tefolle elektrisiteit opwekt wurdt, giet dit ferlern. Mei moai waar wurdt bygelyks in soad enerzjy opwekt mei sinnepanielen, mar dan it de fraach meastal net sa grut. Mei wetterstof kin de enerzjy opslein en ferfierd wurde.

Ek geskikt foar ferfier

Fryslân moat krekt as de hiele wrâld nei in skjinne enerzjyfoarsjenning, de saneamde enerzjytransysje. Mar by de plannen dêrfoar giet it hast altyd oer sinne- en wynenerzjy. Wetterstof wurdt net faak neamd. Wetterstof is sels gjin enerzjy, mar in enerzjydrager. Dat makket it hiel geskikt om wyn- of sinne-enerzjy yn op te slaan of te ferfieren. En it kin brûkt wurde yn it besteande gasnet.

Professor Ad van Wijk fan de Technykse Universiteit Delft is saakkundige op it mêd fan wetterstof. Hy is belutsen by in grutskalich projekt op dit mêd yn Grinslân. Van Wijk foarsjocht in grutte takomst foar wetterstof.


Professor Ad van Wijk – Foto: Omrop Fryslân

Dit artikel verschen eerder op:
https://www.omropfryslan.nl/nijs/881163-hat-wetterstof-de-takomst-yn-enerzjy

Waterstof is een serieuze optie voor ruimteverwarming

Waterstof is nodig om samen met elektriciteit op een duurzame manier in onze toekomstige energiebehoefte te voorzien. Elektriciteit, vooral opgewekt met wind en zon, is een schitterende energiedrager, maar moeilijk op te slaan. Om op de juiste momenten en op de juiste plaatsen voldoende energie te hebben, is een energiedrager als waterstof nodig, die wél goed is op te slaan en die over de wereldzeeën vervoerd kan worden. De plaatsen waar het hard waait en/of de zon zeer fel schijnt, en waar dus goedkoop duurzame energie te produceren is, liggen ver van de dichtbevolkte gebieden op aarde. Waterstof zal daarom nodig zijn voor een betaalbare energieopslag en internationaal transport, en in grote hoeveelheden in onze economie beschikbaar komen. Dat lijdt weinig twijfel. En daar kan de gebouwde omgeving van mee profiteren.

De gebouwde omgeving (en de glastuinbouw) vraagt vooral veel energie voor verwarming in de koude maanden. De totale hoeveelheid energie die in de wintermaanden naar de eindgebruikers stroomt, kan tot wel tienmaal hoger zijn dan in de zomer. De zon schijnt dan nauwelijks en het is niet gegarandeerd dat de windparken voldoende elektriciteit leveren op momenten dat dit echt nodig is. Ons uitstekende gasnet vangt momenteel die klappen op, en als we – zoals sommigen bepleiten – van het gas af moeten en een belangrijk deel van de bebouwing op elektrische verwarming met warmtepompen over moet gaan, zullen elektriciteitsnetwerken sterk verzwaard moeten worden om de piekvraag te kunnen bedienen.

Voor nieuwbouw is een elektriciteitsnetaansluiting met warmtepompen voor verwarming een prima oplossing. De gasaansluiting kan dan wegblijven. Maar tot 2050 zullen ook zo’n 6-7 miljoen bestaande woningen duurzaam verwarmd moeten worden, waarvoor tot dusver vooral in de richting van warmtepompen en warmtenetten (gevoed met rest- en/of aardwarmte) gekeken wordt, soms aangevuld met biogas.

Voor elektrificatie zullen de kosten voor het aanpassen van oudere woningen (warmtepompen, andere radiatoren en/of vloerverwarming, zware isolatiemaatregelen) in het algemeen vele tienduizenden euro’s bedragen. Ook de bijbehorende versterking van de elektriciteitsnetten, om ook op de koudste dagen voldoende elektriciteit naar de gebouwen te krijgen, is kostbaar. In een studie van CE Delft uit 2016 1), waarin de ‘ketenkosten’ voor heel Nederland worden berekend van verwarming met 1. biogas, 2. warmtepompen en 3. warmtenetwerken, viel de optie warmtepompen vanwege de hoge kosten zo goed als weg. Het bleek dat de gasinzet bij de beschikbaarheid van voldoende gas (er zal te weinig biogas zijn) oploopt tot wel zo’n 75% van de hoeveelheid energie die nodig is voor verwarming. De rest wordt vooral geleverd met warmtenetten, die overigens ook gas vragen voor bijverwarming op de piekmomenten. In deze studie is gerekend met een hoge gasprijs: 75 €ct./m3, de huidige productieprijs van biogas. Maar dan nog is biogas voor de maatschappij als geheel de goedkoopste oplossing in veel situaties.

In 2016 werd waterstof nog niet gezien als een serieuze optie om te voorzien in de energiebehoefte. Inmiddels zijn studies uitgevoerd 2) 3) om te beoordelen of het hogedruk-transportnetwerk en het lagedruk-distributienetwerk geschikt zijn voor waterstof. Met bescheiden aanpassingen zijn ze dat inderdaad. De Gasunie is inmiddels een traject gestart om voor 2030 de grote industriegebieden in Nederland met waterstofleidingen, omgebouwde aardgasleidingen, met elkaar te verbinden.

Ook wezenlijk is het punt dat de centrale warmtenetwerken met aardwarmte- en restwarmte-invoeding veelal niet op de piekvraag aangelegd zullen worden – omdat dit te duur is. Om in die piekvraag te voorzien is dus een aanvullende (waterstof)gas-infrastructuur nodig, bijvoorbeeld naar warmte-krachtcentrales in de steden. Als die leidingen er toch moeten lopen, dan is het natuurlijk ook de vraag of het niet kosteneffectiever is die meteen te gebruiken voor energietransport naar (een deel van) de gebouwde omgeving (in ieder geval de oude binnensteden), zodat daar geen nieuwe warmte- en/of elektriciteitsinfrastructuur hoeft te komen.

De eerste waterstof-cv-ketels van Nederlands fabricaat worden inmiddels getest in Rozenburg. In een Engelse studie 4) is berekend dat aanpassingskosten achter de voordeur (nieuwe cv-ketel, fornuis, gasmeter en arbeidsloon) rond de 3500 euro zullen bedragen. Isolatie is ook bij toepassing van waterstofketels gewenst. Isolatie zorgt immers altijd voor minder energiegebruik en dus ook voor lagere energiekosten. Het is dan niet noodzakelijk te isoleren tot een niveau waarbij lage-temperatuur-verwarming kan worden toegepast.

Hiermee ontstaat een aantrekkelijk beeld om waterstof voor de verwarming van gebouwen te gaan gebruiken. In ieder geval daar waar andere opties niet geschikt zijn, zoals in oude binnensteden, in dorpen met veel oudbouw en op het platteland. Ook is waterstof nodig voor de (piek)aanvulling bij elektrische oplossingen en bij rest- en aardwarmtegebruik. De waterstofoptie moet daarom snel beter onderzocht worden op de integrale maatschappelijke kosten in vergelijking met andere opties. De gemeentes die hun warmtevisies voor 2021 opgesteld moeten hebben, in samenhang met de Regionale Energie Strategieën, dienen de waterstofoptie dan ook serieus mee te wegen.

Door Chris Hellinga en Ad van Wijk


1) N. Naber, B. Schepers, M. Schuurbiers en F. Rooijers, „Een klimaatneutrale warmtevoorziening voor de gebouwde omgeving – update 2016,” CE Delft, 2016.

2) R. Hermkens, S. Jansma, M. v. d. Laan, H. d. Laat, B. Pilzer en K. Pulles, „Toekomstbestendige gasdistributienetten,” KIWA, 2018

3) A. v. d. Noort, W. Sloterdijk en M. Vos, „Verkenning waterstofinfrastructuur,” DNV GL, Groningen, 2017

4) D. Sadler, A. Cargill, M. Crowther, A. Rennie, J. Watt, S. Burton en M. Haines, „H21 Leeds City Gate,” Northern Gas Networks, 2016.

Dit artikel verscheen eerder op Omgevingsweb

‘Ontwikkelingen bij waterstof gaan hard maar nog veel uitdagingen’

H2O ACTUEEL   14 MAART 2019

Kon groene waterstof tot voor kort op veel scepsis rekenen, nu wordt deze energiedrager een grote potentie toegedicht bij de energietransitie. Volgens Jos Boere, directeur van Allied Waters, gaan de ontwikkelingen hard. “Veel bedrijven in de transportsector oriënteren zich al op waterstof-elektrisch vervoer.” Maar er zijn ook nog genoeg uitdagingen.

Jos Boere zegt dat naar aanleiding van het seminar ‘Waterstof, Warmte en Water: sleutels tot het post-fossiele energietijdperk’. Dit werd eerder deze week georganiseerd door KWR Watercycle Research Institute en Allied Waters, het uit KWR voortgekomen bedrijf gericht op het internationaal vermarkten van baanbrekende innovaties. Deze organisaties houden zich inmiddels zo’n vier jaar bezig met groene waterstof, die wordt geproduceerd door splitsing van water met behulp van elektriciteit uit wind- of zonne-energie.

Jos Boere

Jos Boere

In het begin kreeg Boere veel sceptische reacties als hij het had over de mogelijkheden van waterstof. “Mensen kwamen met tegenwerpingen als: duur, gevaarlijk, te grote omschakeling.” Maar vooral na de aardbeving in Groningen in januari 2018 is de opinie in Nederland omgeslagen. “Daardoor is erg veel in gang gezet. Denk aan het streven naar Nederland aardgasvrij binnen ruim tien jaar en aan de klimaatdoelstellingen. Waterstof wordt nu gezien als een goede kandidaat voor de toekomst.”

Trekkracht vanuit markt
De energiedrager is volgens Boere in drie opzichten interessant. Waterstof kan dienen als voeding van brandstofcellen voor elektrisch vervoer. Ook is waterstof in te zetten als energiebuffer, dus voor de opslag van energie waaruit later bijvoorbeeld elektriciteit kan worden gemaakt. Verder kan waterstof zeer waarschijnlijk worden gebruikt om oude gebouwen te verwarmen, zegt Boere. “Ons goede aardgasnetwerk is hierbij een asset. Op verschillende plekken zijn pilots in de maak om te laten zien dat dit ook voor waterstof kan worden gebruikt. Daarmee krijgt het aardgasnetwerk een tweede leven.”

Het Planbureau voor de Leefomgeving schrijft in de gisteren gepubliceerde doorrekening van het ontwerp-Klimaatakkoord dat hierin een ambitieus programma voor groene waterstof wordt gepresenteerd. Het planbureau zet daarbij vraagtekens en mist bindende afspraken. Boere vindt echter het programma in het akkoord wat betreft waterstof helemaal niet zo ambitieus. “Het kan zomaar zijn dat de autonome ontwikkelingen harder gaan dan we nu denken. Ik zie trekkracht vanuit de markt komen. Zo zijn veel bedrijven in de transportsector zich al aan het oriënteren op waterstof-elektrisch vervoer. Het is echt aan het kantelen.”

 ‘Door waterstof krijgt het aardgasnetwerk een tweede leven’

Hij wijst op de bijdrage van twee sprekers bij de bijeenkomst: Richard Klatten van Future Proof Shipping en Robert Scholman van aannemersbedrijf Jos Scholman. “Het eerste bedrijf bouwt een groot binnenvaartschip om, zodat dit kan varen op groene waterstof. Het aannemersbedrijf heeft tweehonderd voertuigen en wil die geleidelijk omschakelen naar waterstoftechniek. Zij doen dat niet alleen omdat ze het een goed idee vinden, maar vooral omdat klanten erom vragen. Zo kan een bedrijf zich in de markt onderscheiden op duurzaamheid.”

Goede uitgangspositie voor Nederland
Een andere spreker was Noé van Hulst, sinds een half jaar Nationaal Waterstofgezant. Hij ging in op internationale initiatieven als de Hydrogen Council. Hierbij zijn onder andere olieconcerns en autofabrikanten aangesloten die miljarden investeren in waterstofgerelateerde producten. Van Hulst vertelde dat Nederland een goede uitgangspositie heeft om voorop te lopen op het terrein van waterstof. Dat komt onder meer door het aardgasnetwerk en de kennis bij mkb-bedrijven.

Tijdens het seminar is Ad van Wijk, duurzaam energiespecialist en deeltijdhoogleraar aan de TU Delft, benoemd tot Honorary Fellow 2018 van KWR. De waterstofpionier kreeg deze onderscheiding vanwege zijn grote verdiensten voor KWR, waarvoor hij sinds 2013 parttime werkt. Zo heeft Van Wijk het concept Power to X bedacht voor de lokale inzet en opslag van duurzame energie en (hemel)water.

Techniek nog duur
Wat moet er volgens Boere de komende jaren verbeteren bij groene waterstof? “Schaalvergroting en kostenreductie. De grootste uitdaging is om de keten sluitend te krijgen. De productietechniek is nu erg duur en ook de vraagkant moet zich nog goed ontwikkelen. Ik ben optimistisch dat de keten in beweging komt gezien de huidige ontwikkelingen.”

Boere verwacht dat in de geëlektrificeerde toekomst zowel batterijen als waterstof-brandstofcellen een grote rol zullen spelen. “Het is niet óf-óf maar én-én. In alle gevallen valt er nog veel te optimaliseren. Dat vergt inspanningen in onderzoek en innovatie. Prachtige uitdagingen toch!”

Dit artikel verscheen eerder op H2O waternetwerk