Nederland Waterstofland

Ons land heeft unieke mogelijkheden voor het ontwikkelen van de waterstofeconomie, stelt hoogleraar Ad van Wijk. Groene waterstof wordt een van de dragers van een duurzame energievoorziening, en we hebben de kennis, infrastructuur en industrie om daarmee aan de slag te gaan.

Waterstof. We horen er al zo lang over, en dan meestal gekoppeld aan de vraag of de auto van de toekomst nu op waterstof gaat rijden of op een grote batterij. Net nu het er op lijkt dat de elektrische auto het gaat winnen, komt prof.dr. Ad van Wijk, buitengewoon hoogleraar Future Energy Systems aan de TU Delft en specialist Energie en Water bij onderzoeksinstituut KWR, alsnog met waterstof op de proppen. ‘Vergeet die discussie over de auto maar even. Mijn verhaal heeft een heel andere dimensie.’

Wat is de visie van Van Wijk op de rol die waterstof gaat spelen in ons toekomstige energiesysteem? En waarom moet Nederland daar iets mee? Twee vragen, met in twee deelverhalen de antwoorden: ‘Onze waterstoftoekomst’ en ‘Kansen voor Nederland’.

Ad van Wijk.

ONZE WATERSTOFTOEKOMST

Waterstof wordt een van de dragers van ons duurzame energiesysteem, luidt een van de stellingen van Van Wijk. Dat behoeft uitleg. Bij het maken van waterstof gaat immers energie verloren, dus je zou zeggen dat je elektriciteit maar beter direct kunt gebruiken. ‘Dat klopt op microniveau, bijvoorbeeld als je thuis een zonnepaneel op je dak hebt en je autoaccu wilt opladen als de zon schijnt. Maar ik heb het over ons totale energiesysteem en dan werkt het toch anders.’

Om dat te verhelderen, maakt Van Wijk graag een vergelijking met aardgas. ‘In Groningen hadden we een grote bel en we exporteerden ons relatief goedkope gas naar België, Duitsland en Italië. Nu zijn we bezig gas te winnen in Algerije en bij Australië en verschepen dat vervolgens naar Nederland. Straks gaat het met duurzame energie net zo. Die winnen we met zon en wind op de plekken waar dat het meest voordelig kan, vervolgens brengen we die energie naar plekken waar die het meeste oplevert. En hoe doen we dat transport? Precies, met waterstof. Groene waterstof wordt zo de drager van duurzame energie die zich gemakkelijk laat transporteren en die we voor allerlei doelen kunnen inzetten, variërend van de brandstofcel tot en met industriële processen.’

DOEL OP ZICH

Een veelgehoord verhaal is dat het omzetten van zonne- en windenergie vooral is bedoeld om overschotten aan elektriciteitsproductie nuttig te gebruiken. ‘Zeker; dat gebeurt nu ook al, bijvoorbeeld in Mainz in Duitsland. Maar illustratie Kawasaki dat is in mijn verhaal maar een heel beperkt deel van de totale waterstofproductie.’

Waterstoftankstation in Duitsland.

Bij Van Wijk wordt die waterstofproductie uit duurzame bronnen een doel op zich. Er zijn op de wereld immers altijd wel landen die groene waterstof nodig hebben omdat ze een tekort aan elektriciteit uit zon en wind hebben. ‘Bovendien: elektriciteitsgebruik is maar een kwart van ons totale energieconsumptie. Een kwart is voor transport, een kwart voor woningverwarming en een kwart voor industriële processen.’ En juist voor die andere toepassingen leent waterstof zich zo goed. ‘Waterstof is een grondstof van veel chemische producten en er is prima de hitte mee te produceren die tal van industriële processen nodig hebben. En voor zwaar transport is het de beste groene brandstof in combinatie met een brandstofcel.’

GOEDKOPER

Waterstof als doel op zich betekent dat een deel van de wind- en zonne- energie niet beschikbaar is voor de elektriciteitsvoorziening, terwijl we die ook hard nodig hebben. ‘Hier heb je precies het kantelpunt’, benadrukt Van Wijk. ‘Er zijn op dit ogenblik al locaties waar het produceren van energie uit wind of zon minder kost dan met de goedkoopste fossiele brandstof. Zo is in Dubai elektriciteit met zonne-energie opgewekt voor tussen de 2 en 3 dollarcent per kWh, terwijl op de Noordzee het eerste project in Duitsland zonder subsidie al op stapel staat.’

En die prijsdaling is nog niet op zijn eind. ‘Bloomberg New Energy Finance voorziet tot 2040 een verdere prijsdaling van meer dan 50 %. Met zulke lage kosten wordt duurzame energie niet meer schaars.’ Van Wijk roept het Desertec- project in herinnering; het plan om in Noord- Afrika goedkoop zonne-energie te winnen en die naar Europa te transporteren. ‘Dat liep onder andere stuk op de enorme kosten die moesten worden gemaakt voor het transport via een nog niet bestaand hoogvermogen elektriciteitsnet. Met waterstof is het een kwestie van verschepen.’

Een elektrolyser.

Maar het maken van die waterstof is toch ook duur? Dat gaat meevallen, zegt Van Wijk. Ook bij de waterstofproductie met een elektrolyser, waarbij de stroom het water splitst in waterstof en zuurstof, is sprake van enorme prijsdalingen. ‘Twee jaar geleden rekenden we nog met een prijs voor een elektrolyser van 1200 tot 1500 euro per kW, onlangs werd bekend dat het Noorse NELHydrogen in het Franse Normandië een installatie van 100 MW gaat bouwen voor 47,5 miljoen euro. Dat is dus al voor minder dan de helft.’

Hetzelfde geldt voor de brandstofcellen waarmee waterstof weer is om te zetten naar elektriciteit. ‘Vooral vanuit de Japanse en Koreaanse auto-industrie wordt daar enorm in geïnvesteerd. Ook daarvan dalen de prijzen; de verwachting is dat die bij massaproductie rond de 50 dollar per kW komen te liggen.’

VERGEET ENERGIE-EFFICIENCY

Terug naar het rendement van het omzetten van elektriciteit in waterstof en terug. Dat is niet meer dan 40 tot 50 %, terwijl een auto direct elektrisch laten rijden een rendement heeft van 80 %. ‘Dat klopt helemaal, maar hoeft geen probleem te zijn. Want in Noord-Afrika leveren zonnepanelen drie keer zoveel op als in Nederland. Haal je die energie via waterstoftransport naar ons land, dan heb je met die waterstofauto toch een beter rendement.’ Het brengt Van Wijk tot een van zijn karakteristieke, stellige uitspraken: energie-efficiency is niet meer doorslaggevend. ‘Als het produceren van duurzame energie zo goedkoop wordt en er op aarde plekken genoeg zijn om die te produceren, dan gaat het alleen nog om de kosten. Vaak wordt gedacht dat energie-efficiency de heilige graal is van de energietransitie, maar dat is niet meer zo. Los van het feit dat het altijd verstandig is zo zuinig mogelijk met energie om te gaan.’

De waterstofauto Toyota Mirai.

Van Wijk noemde het al: waterstof is breed inzetbaar. ‘Je kunt ermee stoken, rijden en het als grondstof in de chemie gebruiken. Dat alles gebeurt ook al volop; het is alleen niet algemeen bekend. Tussen Rotterdam, Antwerpen en helemaal tot in Noord-Frankrijk ligt een veelgebruikt leidingnet voor waterstof. Japanse en Koreaanse autofabrikanten hebben een waterstofauto met brandstofcel in die landen op de markt gebracht. Alle in Nederland geproduceerde kunstmest wordt met waterstof gemaakt. In Duitsland werkt onder andere Shell samen met Mercedes, BMW en Volkswagen aan het neerzetten van vierhonderd waterstoftankstations voor 2023. Australië heeft met Japan een overeenkomst gesloten om waterstof te leveren, waarvoor Kawasaki nu een speciaal transportschip gaat bouwen. En onlangs werd bekend dat het Noorse Statoil waterstof gaat leveren aan Nuon voor een van zijn elektriciteitscentrales bij de Eemshaven.’

Wat die voorbeelden volgens Van Wijk ook duidelijk maken, is dat het met de eventuele gevaren van waterstof wel meevalt. ‘Het is een energiedrager en daar moet je per definitie voorzichtig mee om gaan, net zoals bij aardgas of elektriciteit. Maar we hebben genoeg ervaring om er verantwoord mee om te springen.’


KANSEN VOOR NEDERLAND

Waterstof is via elektrolyse met elektriciteit te produceren, maar dan moet die elektriciteit wel voorhanden zijn en het liefst in constante hoeveelheden. ‘Wil je groene waterstof produceren voor een concurrerende prijs van twee tot drie euro per kg, dan moet je zorgen dat het elektrolyseapparaat continu kan werken’, zegt Van Wijk. Hij zet zijn kaarten daarom niet op elektriciteitsoverschotten van zon en wind. ‘Natuurlijk, als zo’n overschot er is, moet je er gebruik van maken. Maar je hebt vooral een continu stroomaanbod nodig.’ Noord-Nederland heeft daarvoor een unieke positie, want zo’n aanbod is te vinden in de Eemshaven. Daar landen diverse grote kabels aan: de NorNed- stroomkabel die loopt tussen Nederland en Noorwegen (700 MW), de kabel van het offshore windpark Gemini (600 MW) en vanaf 2019 de Cobrakabel die loopt tussen Denemarken en Nederland (700 MW). En omdat Noorwegen zijn energie deels met waterkracht opwekt, kan dat land voor het benodigde continue stroomaanbod zorgen.

Waterstofplan voor Noord-Nederland in cijfers.

Van Wijk wil een deel van de waterstof produceren met een biomassavergasser. ‘In een energietoekomst waar we geen fossiele brandstoffen meer gebruiken, hebben we voor de chemie een andere bron van koolstof nodig, en die zal moeten komen van biomassa.’ De combinatie met waterstofproductie door elektrolyse noemt Van Wijk ideaal. ‘Bij elektrolyse komt zuivere zuurstof vrij, die de biomassavergasser nodig heeft.’

TRANSPORTLEIDING

Is de waterstof geproduceerd, dan moet er ook een afzetmarkt zijn, bijvoorbeeld de nu al bestaande grote markt voor waterstof in de chemie. Deels is die te vinden in het noorden, bij het chemiecomplex in Delfzijl. ‘Voorlopig liggen de grootste afzetmarkten in Rotterdam, Geleen en in Duitsland bij de chemieclusters, dus daar moet die waterstof ook heen. En dat brengt een tweede unieke positie van Noord-Nederland in beeld: het gasleidingennet. ‘Vanuit Groningen gaan meerdere gastransportleidingen met grote capaciteit naar het zuiden. Een deel van die capaciteit komt vrij wanneer we in Groningen minder aardgas gaan produceren. Laten we dat leidingnetwerk behouden voor onze energietoekomst door een gedeelte ervan nu al om te bouwen tot een waterstofnet. Veel hoeft dat niet te kosten. Enkele tientallen miljoenen euro’s is voldoende om een grote transportleiding van de Eemshaven naar Rotterdam om te bouwen.’

Om dit voor elkaar te krijgen, ziet Van Wijk weinig technische belemmeringen. ‘Elektrolyse, het zorgvuldig omgaan met waterstof; we weten wel hoe dat moet. En het mooie is dat alle industrie hier in het noorden die is ontstaan rond de verwerking van het aardgas hun expertise kunnen voortbouwen richting waterstof.’ Biomassavergassing vereist wel meer onderzoek en experimenten, onderkent Van Wijk. ‘Dat hebben we nog niet goed genoeg in de vingers.’

GEOÖRDINEERDE AANPAK

Het lastigst noemt Van Wijk echter het realiseren van het waterstofplan dat hij met de Noordelijke Innovation Board maakte. ‘We hebben adviesbureau Accenture gevraagd uit te zoeken wat er nodig is om de waterstofproductie van de grond te krijgen. Dat vereist bedrijven die willen investeren en een overheid die de omschakeling naar waterstof mogelijk maakt. Want nu mogen aardgasleidingen bijvoorbeeld alleen aardgas transporteren. Zo’n gecoördineerde aanpak met een duidelijke regie, waarbij overheid en bedrijfsleven gezamenlijk optrekken; het lijkt alsof we dat in Nederland zijn verleerd. Ik hoop dat het er nu toch van komt, want we hebben met het Eemshavengebied een unieke hot spot om voortrekker te worden van de waterstofeconomie.’(FB)

Dit artikel verscheen oorspronkelijk op https://www.deingenieur.nl/artikel/nederland-waterstofland

‘Parkeergarages als elektriciteitsleveranciers’

‘Parkeergarages als elektriciteitsleveranciers’

Op elk moment de gewenste elektriciteit produceren die er nodig is zonder kolen-, gas- of kerncentrales. Dat kan volgens prof. dr. Ad van Wijk, buitengewoon hoogleraar Future Energy Systems aan de TU Delft, wanneer duurzame energie wordt gecombineerd met energie uit elektrische auto’s op brandstofcel-waterstof. Parkeergarages in woonwijken worden dan energieleveranciers voor woonwijken.

Lees het volledig artikel, vanaf pagina 14: P24_2_2017 LR

Het artikel verscheen oorspronkelijk in: Parkeer24 – jaargang 12 – nummer 2 – mei 2017 – pagina 14 – 16

De waterstofauto als rijdende energiecentrale

Dit artikel verscheen oorspronkelijk op Duurzaam Nieuws

Hyundai i35 waterstofautoOnderzoekers van de TU Delft hebben een stopcontact als elektriciteitsuitgang gemonteerd op de Hyundai ix35 Fuel Cell, een elektrische auto die rijdt op waterstof. Dat maakt van de emissieloze Hyundai ix35 Fuel Cell een energiecentrale op wielen. Dit is een Europese primeur.

De onderzoeksgroep Future Energy Systems van de TU Delft doet onderzoek naar verschillende geïntegreerde systeemtoepassingen van brandstofcellen. Bij voorbeeld in het programma Car as Power Plant. Ad van Wijk is de leider van de groep.

‘De installatie van het stopcontact als elektriciteitsuitgang is een grote stap voorwaarts in een toekomst waarin waterstofauto ’s een bijdrage leveren aan schone mobiliteit en duurzame energievoorziening’, zegt Frank Meijer, hoofd van de afdeling Waterstof Elektrische Mobiliteit van Hyundai. Waterstofauto ’s produceren elektriciteit, warmte en schoon water. Die kunnen worden gebruikt in huizen, scholen en kantoren.

 

Elektriciteit voor tien huizen

De Hyundai ix35 Fuel Cell kan 10 kW vermogen leveren. Dat is genoeg om gemiddeld tien huizen te voorzien in hun elektriciteitsgebruik. De auto is in staat elektriciteit te leveren aan het elektriciteitsnet of direct aan een woning, bijvoorbeeld als aanvulling op zonne- en windenergie. Deze toepassingen worden in de volgende fase onderzocht en getest.

De Hyundai ix35 Fuel Cell is de eerste commercieel inzetbare waterstofauto ter wereld. Momenteel rijden er meer dan 250 Hyundai-waterstofauto’s in Europa, verdeeld over dertien landen. Dat is meer dan alle waterstofauto’s van alle andere fabrikanten bij elkaar.

 

Hyundai wil de groenste worden

Hyundai wil in de voorhoede gaan opereren als het om milieuvriendelijkheid gaat. Daarom komt het merk met een hele serie modellen met alternatieve aandrijving. Volgens het plan ‘2020.22.2’ wil Hyundai in 2020 wereldwijd 22 modellen met alternatieve aandrijflijn in het gamma hebben. Naast twee auto’s op waterstof gaat het om twaalf reguliere hybrides, zes plug-inhybrides en twee volledig elektrische auto’s.

 

Ionic in drie varianten

Met de recente introductie van de Ioniq wordt een eerste flinke stap gezet. De auto is met drie verschillende aandrijflijnen verkrijgbaar: gewoon hybride, plug-in hybride en ten slotte volledig elektrisch. Het uitgangspunt dat een schone auto voor iedereen bereikbaar moet zijn maakt Hyundai waar met een vanaf prijs van onder €23.000,-

hyundai inoniq

Hyundai geeft de Ioniq Electric een extra impuls door een samenwerking aan te gaan met energiebedrijf Eneco en met Fastned, de leverancier van snellaadstations voor elektrische auto’s. Bij het laadpakket is 5 jaar hosting, garantie, service en onderhoud van het laadpunt inbegrepen. Daarbij hoort ook een universele oplaadpas waarmee de Hyundai Ioniq Electric bij openbare laadpunten is op te laden.

 

De belofte van waterstof

Hoewel waterstof nog een flinke achterstand heeft op elektrische auto’s op batterijen, kan die wel eens snel worden ingehaald als het gaat om de systeemtoepassing van de waterstofauto. De belangrijkste stap is het bouwen van voldoende tankstations. Over 3 jaar moeten dat er 20 zijn. Daar is in Nederland nu een begin mee gemaakt. Andere Europese landen, zoals Duitsland en de Scandinavische landen, zijn daar al eerder mee begonnen en liggen ruim op ons voor. Maar we komen er aan.

Car as Power Plant: nieuwe mijlpaal bereikt!

CaPP_socket_plugEuropese primeur voor Delftse onderzoekers: brandstofcelauto die stroom levert

Onderzoekers van de TU Delft zijn erin geslaagd om een stopcontact als elektriciteitsuitgang te ontwerpen en te installeren op een brandstofcelauto. In samenwerking met innovatieve marktpartijen als Accenda, Stedin, Hyundai, RDW en GasTerra en studenten van de TU Delft, de Haagse Hogeschool en het ROC Mondriaan hebben ze gezorgd dat de zero-emission Hyundai IX35 FCEV nu een energiecentrale op wielen is; een Europese primeur.

Car as Power Plant
De onderzoeksgroep Future Energy Systems van professor Ad van Wijk binnen de vakgroep Process & Energy, faculteit 3mE, doet onderzoek naar verschillende geïntegreerde systeemtoepassingen van brandstofcellen, zoals in het programma Car as Power plant. Brandstofcelauto’s produceren elektriciteit, warmte en schoon water uit waterstof. Dat kan worden gebruikt in huizen, scholen en kantoren. De omgebouwde Hyundai brandstofcelauto kan nu 10 kW vermogen leveren. Dat is genoeg om gemiddeld tien huizen te voorzien in hun elektriciteitsgebruik. Met het stopcontact zijn de innovatoren in staat om de auto elektriciteit geprogrammeerd te laten leveren aan het elektriciteitsnet of direct aan een woning, bijvoorbeeld als aanvulling op zonne- en windenergie. Deze toepassingen worden in de volgende fase onderzocht en getest.

Omdenken in het systeem
Deze innovatie brengt meerdere technologische innovatievraagstukken met zich mee: hoe kan deze auto zijn elektriciteit zodanig leveren dat het elektriciteitsnet met een wisselend aanbod aan zonne- en windenergie stabiel wordt. En hoe kan lokaal en op een duurzame manier de benodigde waterstof worden geproduceerd uit bijvoorbeeld zonne-energie, worden opgeslagen en worden gedistribueerd? Ook ontstaan er vragen op andere, niet technologische domeinen, bijvoorbeeld als het gaat om het verdienmodel van energiebedrijven, de acceptatie door automobilisten, de bestaande wet- en regelgeving omtrent energieproductie en distributie of de training en opleiding van de installatiebranche en automobielindustrie. Om dit soort innovaties uiteindelijk in de praktijk te laten slagen, is het belangrijk te innoveren en om te denken op systeemniveau.

Systeeminnovaties op The Green Village, TU Delft.
Op de campus van de TU Delft werken vele marktpartijen samen aan innovaties op systeemniveau. The Green Village, het ‘levende systeemlab’ van en voor de TU Delft, dat momenteel in ontwikkeling is, brengt alle benodigde stakeholders bij elkaar. Wetenschappers en studenten, bedrijfsleven en overheden participeren in verschillende innovatieprogramma’s, waaronder Car as Power Plant. Al deze partijen werken gelijktijdig, ieder vanuit zijn eigen discipline en expertise, samen aan duurzame innovaties. Zo versnellen we de ontwikkeling ervan en werken we gezamenlijk aan een duurzame toekomst.

CaPP_socket

CaPP_interior

Presentatie op TEDx Groningen

Met trots kan ik melden een presentatie op TEDx Groningen te hebben gegeven. Het thema was duurzame energie, met de focus op de inefficiëntie van onze huidige manier van leven. De deurbel is uiteraard voorbij gekomen, net als de mogelijkheden die onze auto’s geven om elektriciteit op te wekken.

infographic-car-as-powerplant

Er is hierover ook een artikel verschenen in het Dagblad van het Noorden.

Artikel Autoweek: Auto van morgen – alles wordt anders (Dutch only)

In een uitgebreid artikel in Autoweek wordt het principe van je auto als energiecentrale groots uit de doeken gedaan. In de woorden van de schrijver:
Een brandstofcelauto is niets anders dan een elektrische auto met een eigen elektriciteitscentrale. Als die centrale alleen gebruikt wordt om de auto te voeden, dan zal hij het overgrote deel van de tijd nietsdoen. Zonde. Voor een groep visionairs aan de TU Delft aanleiding om te kijken of er meer mogelijk is met die brandstofcel. Hoe realistisch zijn de plannen van die Delftenaren?

Het volledige artikel is te downloaden als PDF: Artikel Autoweek: Auto van morgen – alles wordt anders, of koop de Autoweek in de winkel!

screenshot-autoweek

‘Onze auto als elektriciteitscentrale’ (Dutch only)

We gebruiken onze auto voor ons werk, boodschappen te doen, vakantie, onze kinderen naar school te brengen of voor vriendenbezoek. De auto is voor velen een onmisbaar apparaat geworden, comfortabel en veilig, maar een energieslurper, eigenlijk niet meer dan een rijdende kachel. Wereldwijd wordt ongeveer een kwart van ons energiegebruik in deze rijdende kachels verstookt.

Wat is de energie-efficiëntie om ons in onze auto van A naar B te verplaatsen?
Een kleine berekening. De benzinemotor heeft een rendement tussen de 15 en 20%, waarbij benzine wordt omgezet in een draaiende beweging. De rest van de energie in de benzine wordt omgezet in warmte, dus 80-85% van de energie-inhoud van benzine moet worden weggekoeld. Nu moet die draaiende beweging via de versnellingsbak overgebracht worden op de wielen, dat gebeurt met een efficiëntie van 50%. Dus dan zitten we op ongeveer 7-10%. De auto ondervindt weerstand van de weg en van de lucht, die overwonnen moet worden en dit leidt weer tot energieverlies en zitten we op een efficiëntie van 3-5%. Veel analyses houden hier op, maar het is nog erger, want we verplaatsen ons in een auto van 1000 kilo om in mijn geval iemand van 100 kilo van A naar B te verplaatsen. Dus uiteindelijk komt de energieefficiëntie uit op minder dan 0,5%. Treurig toch!

Kan dat beter? Ja, en dat betekent elektrisch rijden. We zien nu de introductie van de elektrische auto die bestaat uit een elektromotor en een groot batterijpakket waar stroom in wordt opgeslagen. De rest van de auto is nog steeds hetzelfde. Maar zelfs dat geeft al een efficiëntieverbetering. De elektromotor heeft een efficiëntie van 95%, het op- en ontladen van de batterij een efficiëntie van 80% en het gemiddelde elektriciteitsopwekrendement in Nederland is 40%. Dus het gemiddelde motorrendement komt daarmee op 30% in plaats van de 15-20% van de benzinemotor. Dat is al een stuk beter, maar die elektromotoren kunnen uiteindelijk ook in de wielen worden geplaatst en dan heb je het verlies van de versnellingsbak niet meer. En als we dan ook nog in een auto van bioplastic gaan rijden, die de helft lichter is, komen we op een totale energie efficiëntie van zo’n 5%. Dit klinkt nog steeds niet veel, maar is uiteindelijk een factor 10 beter en betekent dus ook 10 keer minder energiegebruik.

Maar het kan met dat elektrisch rijden nog mooier: we kunnen er ons niet alleen veel energie-efficiënter in verplaatsen, maar we kunnen in de toekomst de elektrische auto met brandstofcel ook gebruiken om onze stroom mee op te wekken. De brandstofcel als automotor produceert elektriciteit uit waterstof met 60% rendement. Dat waterstof moeten we maken, bijvoorbeeld uit aardgas of biogas met een rendement van 75%. Maar dan hebben we nog steeds een elektriciteitsprodutierendement van 45%. Dat is beter dan het gemiddelde rendement van 40% van de Nederlandse elektriciteitscentrales. Als we dan in onze auto’s zo’n efficiënte centrale hebben, zou die dan niet, als de auto stil staat, onze elektriciteit kunnen produceren? Eens even uitzoeken, we gebruiken onze auto maar zo’n 5% van de tijd, de rest van de tijd staat die stil. Het vermogen van een automotor is tegenwoordig zo’n 100 kW. Hé, een auto kan makkelijk de elektriciteit produceren voor wel 100 woningen en dan kunnen we er ook nog gewoon in rijden. Wat als we nu een parkeergarage bouwen, waar we automatisch onze auto parkeren, aansluiten op een waterstofnet, het elektriciteitsnet en een warmtenet. We maken aan de poort van de parkeergarage uit aardgas of biogas waterstof, tanken onze tank vol zodat we met een volle tank uit de parkeergarage rijden. Maar als de auto toch stil staat, kan de brandstofcel in de auto ook elektriciteit voor het net produceren met een hoog rendement. Een parkeergarage met 500 auto’s verandert op deze manier in een elektriciteitscentrale van 50 MW, die met gemak 50.000 woningen van elektriciteit kan voorzien. Dus met een parkeergarage kunnen we alle woningen in de stad Delft van stroom voorzien!

Ongelooflijk, met één parkeergarage. Hebben we dan nog wel elektriciteitscentrales nodig in de toekomst? Het antwoord is nee. We kunnen met gemak met onze auto’s alle elektriciteitscentrales in Nederland vervangen. Er zijn in Nederland 8 miljoen auto’s die met elkaar zo’n 100 miljard kilometer per jaar rijden. Elk jaar kopen we meer dan een half miljoen nieuwe auto’s. Dus elk jaar zouden we 50.000 MW aan nieuw vermogen op wielen kopen. In Nederland staat aan elektriciteitscentrales zo’n 25.000 MW opgesteld. Dus elk jaar kopen we meer dan 2 keer zoveel elektriciteitsproductievermogen op wielen dan dat er is opgesteld. Elk jaar? Ja, elk jaar! En die auto’s zijn van u en mij. Als we die in de parkeergarage laten gebruiken voor elektriciteitsproductie dan hoeven we niet te betalen voor parkeren, maar dan krijgen we betaald voor parkeren. Zou dat niet mooi zijn?

Ad van Wijk is duurzaam energieondernemer, adviseur en professor
in Future Energy Systems aan de TU Delft.

Dit artikel is eerder verschenen als column voor EnergieActueel.

Ad van Wijk named in ‘Top 10 Forecasts for 2013 and Beyond’

UPDATE: I’ve also been named the #1 forecast in a special report by the World Future Society.
Every year The Futurist magazine publishes its Outlook report, with ten thought-provoking forecasts that will change the world. In the past, they have pinpointed among others the emergence of the Internet and the financial crisis, all years before they became common-place.

I’m proud to sat they have placed me on their #2 spot, with my ideas regarding the future of cars and they pivotal role I foresee them playing in the generation of electricity. You can check out their article with the top 10 Forecasts for 2013 and Beyond, or watch the video below (the segment begins at 2:35):