Hydrogen as an energy vector
This month, following our 2021 editorial line on past & present disruptors, we have dedicated our post to Henry Cavendish, chemist and physicist who discovered hydrogen back in 1766, an element of great importance in the present energy transition.
This time, we have interviewed Professor Ad van Wijk, professor of Future Energy Systems at TU Delft in The Netherlands and advisor in sustainable energy. Among other subjects, he talked about his view of hydrogen as a priority element in the future of energy, its key applications, the challenges it faces and the countries involved in this hydrogen-based transition revolution.
Could Hydrogen Replace the Need for an Electric Grid?
As a solution to climate change, hydrogen is starting to attract a lot of attention — and investment. The element is the most abundant chemical substance in the universe and is already used as a feedstock in refineries and the chemical industry. But it is hydrogen’s potential as an energy carrier, capable of transporting large amounts of energy over long distances, that is generating the most excitement.
BRINK spoke to professor Ad van Wijk, who has been described as one of the pioneers of the hydrogen economy, and is professor of Future Energy Systems at Delft University of Technology, about the current state of the technology.
AD VAN WIJK: At present, most hydrogen is generated from fossil fuels, mainly from natural gas but also from coal; that creates carbon dioxide emissions when you produce the hydrogen. This is called grey hydrogen. Hydrogen is mostly used as a feedstock in the chemical industry, for example, to produce ammonia/fertilizers, and also in refineries to crack and desulfurize oil.
However, the future of hydrogen is as an energy carrier.
One of the best applications is in heavy transport — as a fuel in ships, long-distance trucks and trains that are not electrified. You can put ammonia, a hydrogen product, into a diesel engine, and even directly inject hydrogen itself into the air inlet of a diesel engine. For example, two months ago, we launched the first tractors with directly injected hydrogen in the engine in the Netherlands.
For a ship, it is a bit different because it is difficult to carry enough hydrogen in compressed form for long journeys. But for most coastal vessels, you can store enough energy, and the first ships are now being converted.
No Need for an Electric Grid
BRINK: How feasible is it today to create hydrogen to scale with zero carbon emissions?
AD VAN WIJK: Hydrogen can be produced from water by electrolysis, whereby the water molecule is split into hydrogen and oxygen, and the hydrogen is captured. When the electricity for doing this is coming from solar or wind, then it’s completely clean — so-called green hydrogen — but when the electricity comes from fossil fuels like coal-fired power plants, it is called grey hydrogen.
You need a combination of large scale solar and wind installations connected to the electrolyzer to create green hydrogen. These hydrogen production plants, as we call them, don’t need to be connected to the electricity grid. The electricity from the solar or wind is converted directly into hydrogen, which is used to transport the energy long distances instead of electric pylons.
When you do that at large scale at good resource sites, for example, solar farms in North Africa, you get a very high yield. Today, it is possible to produce electricity for almost 1 cent per kilowatt-hour with solar. When that is converted into hydrogen, the price for the hydrogen is about one euro, or $1 per kilo, which is competitive with even the gray fossil fuel hydrogen.
Hydrogen’s Potential As an Energy Carrier
BRINK: How do you move the hydrogen from the solar farms?
AD VAN WIJK: By pipeline. That’s the interesting thing: It is about 10 times cheaper to transport energy by a hydrogen pipeline than by an electric cable. That makes it possible to transport electricity very cheaply from somewhere like North Africa to the demand centers in Europe, for example.
Hydrogen is a very modular technology: There are no rotating parts and no high temperatures; it therefore promises to be much cheaper than combustion technology.
At its destination, you can use the hydrogen directly as a fuel. But you can also transport the hydrogen to a power plant, convert it back to electricity, and then distribute the electricity through the local grid.
For economic reasons, it is much better to transport energy over long distances by molecules. When you transport hydrogen over a distance of about a thousand miles by pipeline, the costs are about half a cent per kilowatt-hour. When you do the same with electricity, it is about 5 cents per kilowatt-hour.
The Promise of Hydrogen Fuel Cells
BRINK: You mentioned fuel cells. How advanced is the technology for creating them?
AD VAN WIJK: The fuel cell technology is the reverse process of electrolysis, you could say; fuel cells and electrolyzers do opposite things. They are more or less the same technology — the only thing is, you reverse the process.
Fuel cells have a lot of promise for mobility because you don’t have any tailpipe emissions, and they offer much higher efficiency than combustion technologies. Also, with hydrogen you can fuel your car in four or five minutes, the same as diesel or gasoline engines.
That is why car manufacturers are developing fuel cell technology for their larger cars — and especially for buses and trucks. Once this is done on a mass scale, the cost of these fuel cells will come down to about $30 to $50 per kilowatt fuel cell system.
Hydrogen is a very modular technology. It’s really quite a simple thing. Unlike a combustion engine, there are no rotating parts and no high temperatures; it therefore promises to be much cheaper than combustion technology which has a lot of costly materials.
Fuel Cells Ready for Mass Production
In five to 10 years, fuel cells will start replacing combustion technology such as diesel engines. A fuel cell converts hydrogen electrochemically into electricity, and the electricity is then used to drive the car or the propellers of the ship. So you don’t have any other emissions like the nitrogen oxide that you have with a combustion engine.
Ten years ago, the fuel cells were too heavy and too large and didn’t have the right lifetime, but in the past few years, car manufacturers like Toyota and Hyundai have developed fuel cells that are ready for mass production.
The fuel cell technology can also be used for so-called electricity balancing, when you don’t have enough electricity produced by solar and wind. And today in Japan, Panasonic is even making very small fuel cells for homes for when your solar panels are not sufficient. They can also potentially be used for home heating.
This article originally appeared on https://www.brinknews.com/could-hydrogen-replace-the-need-for-an-electric-grid/
De ontbrekende schakel in de waterstofeconomie
Waterstofeconomie in de versnelling op de eMMergy conferentie
The hydrogen solution?
For climate experts, green or renewable hydrogen — made from the electrolysis of water powered by solar or wind — is indispensable to climate neutrality. It features in all eight of the European Commission’s net zero emissions scenarios for 2050 (ref. 1). In theory, it can do three things: store surplus renewables power when the grid cannot absorb it, help decarbonize hard-to-electrify sectors such as long-distance transport and heavy industry, and replace fossil fuels as a zero-carbon feedstock in chemicals and fuel production.
Europe is leading the global resurgence of an energy carrier, with origins back in World War II. Hydrogen was originally used by the Nazis to produce synthetic fuels from coal. Today, it is back in business. The International Energy Agency lauded its “vast potential” in a first ever report on hydrogen in June 2019 (ref. 2). Bloomberg New Energy Finance said clean hydrogen “can help address the toughest third of global greenhouse gas emissions by 2050” in March 2020 (ref. 3).
“Europe is the laboratory,” says Emmanouil Kakaras, head of new business at Mitsubishi Power Europe and member of an internal task force dedicated to carbon-free fuels. “We look at it as the place where technology and especially policy can be tested and pave the way for global deployment.” The hydrogen economy is a priority for the EU’s post-COVID-19 economic recovery package4; this package is guided by the European Green Deal, which commits Europe to become the world’s first climate neutral continent by 2050 (ref. 5). It is hard to overstate the difference with Europe’s past goal, an 80–95% emission reduction by 2050. Net-zero requires a full fossil fuel phase-out. It puts the spotlight on gas for the first time. And the gas industry is turning to hydrogen for a new lease of life.
“If Europe adopts a 55% emission reduction target for 2030, Germany would have to reduce its heating emissions by half,” says Eva Hennig, head of EU energy policy for Thuega, a network of local German utilities. “That is impossible with realistic renovation rates and just electricity. You will have to decarbonize gas for heating.” Hydrogen is a lifebelt for regions such as the Northern Netherlands, with an expertise and infrastructure looking for a new purpose as earthquakes and climate change turn natural gas from boon to bane.
Yet the climate community is cautious. “The risk is that the [hydrogen] hype triggers a reversal of priorities,” says Brussels-based Dries Acke, head of the energy programme at the European Climate Foundation, a philanthropic initiative to catalyse the transition to a climate-neutral economy. “Energy efficiency, renewables and direct electrification are the bulk solutions [to climate change]. Hydrogen comes in around that. Hydrogen is essential to get to net zero in certain sectors like industry, but we are talking about the last 20% of emission reductions.”
Moreover, the climate impact of hydrogen depends entirely on how it is made. “There is a risk of policy before definitions,” continues Acke. He warns that this could see hydrogen go the way of biofuels, which have suffered from start-stop policies because of intense debate over their net impact on climate change. “Hydrogen is not a technology, it is an energy carrier that can be produced clean or dirty,” he says.
Blue hydrogen: a controversial stepping stone Blue hydrogen revives the capture and storage (CCS) story. It is the production of ‘decarbonized’ hydrogen by applying CCS to the traditional route of making hydrogen via steam methane reforming. The European Commission calls CCS a “priority breakthrough technology” in its Green Deal and promises it fresh money in its COVID-19 recovery package. The big difference with the past — policymakers in Europe have already poured billions into the technology, with little to show for it — is the new hydrogen economy narrative, a shift in focus from the power sector to industry, and projects starting from the transport and storage rather than carbon capture perspective. The concept has moved from post- to pre-combustion CCS. This means the business case no longer depends entirely on the EU carbon price — never high enough — but also on the value of the blue hydrogen it produces. The oil and gas industry is one of the biggest supporters of blue hydrogen because it offers them a path towards clean fuels while drawing on their existing gas production, transport and storage facilities. “What we are risking [with CCS] is a rapid decarbonization of gas,” joked Per Sandberg from Norwegian oil and gas giant Equinor at a CCS event in the European Parliament in Brussels in January 2020. Many argue that blue hydrogen is essential to build up a market for what will ultimately be green hydrogen. The climate community is divided, however. From a climate perspective, the problem of blue hydrogen is that it depends on CCS and natural gas. First, commercially viable CCS remains an aspiration rather than a reality, and second, carbon capture can never be 100% efficient. At the same time, there is great uncertainty over the climate impact of upstream methane leakage. Methane is the most important short-lived climate pollutant. Methane emissions in 2020 will cause half the global warming over the next 20 years, according to the US-based NGO the Environmental Defense Fund. The oil and gas industry is the second biggest source of methane emissions after agriculture and the easiest one to tackle. Forty per cent of the industry’s emissions could be avoided at no net cost, estimates the International Energy Agency12. The EU is working on a methane strategy. Reducing methane emissions could play a “very significant role” in enabling it to increase its climate ambitions for 2030, an EU official said in November 2019. “The credibility of gas is on the line,” said Mónika Zsigri from the Commission’s energy department. “Methane leakage determines how interesting gas is versus jumping directly to renewables.” It also determines how interesting blue hydrogen is versus green.
There are three main types of hydrogen discussed today. First, ‘grey’ hydrogen. The vast majority of hydrogen in use — and there is plenty of it, mainly in industry — is made from natural gas. The process emits CO2. Second, ‘blue’, or as the gas industry likes to call it, ‘decarbonized’, hydrogen is made from natural gas with carbon capture and storage (CCS) (see Box 1). Finally, ‘green’ or ‘renewable’ hydrogen — which every hydrogen advocate says is the ultimate goal — is made from the electrolysis of water powered by renewables.
There are other colours. The main one on the horizon is ‘turquoise’ hydrogen made from molten metal pyrolysis. This is the thermal cracking of natural gas into hydrogen and solid carbon. Its appeal is twofold: one, it does not require CCS, and two, instead of CO2 it produces a material that has been on the EU’s critical raw materials list for years (as ‘natural graphite’). Big corporates such as Russia’s Gazprom and Germany’s BASF are looking into it, but this is a technology that is still in its infancy.
Making the business case
For some such as Samuele Furfari, professor in energy geopolitics at the Université Libre de Bruxelles in Belgium, hydrogen of any colour makes little sense. It makes much more sense to use fossil fuels or electricity directly. “Each [conversion] step is a waste of energy,” he says. “The processes are technically feasible but they are nonsense from an energy and economic point of view. Hydrogen has re-emerged because we need a solution to the intermittency of renewables.”
Ad van Wijk, professor for future energy systems at Delft University of Technology in the Netherlands and a founding father of the hydrogen economy concept, counters that efficiency is no longer the benchmark: “a solar panel in the Sahara generates 2–3 times as much power as one in the Netherlands. If you convert that power to hydrogen, transport it here and turn it back into power via a fuel cell, you are left with more energy than if you install that solar panel on a Dutch roof. In a sustainable energy system, you calculate in terms of system costs, not efficiency.”
van Wijk sums up: “even if all production and consumption was electric, more than half of that power would have to be converted to hydrogen for [cost-effective] transport and storage.” Electricity cables can transport up to 1–2 GW, but the average gas pipeline can carry 20 GW (and is 10–20 times cheaper to build). The challenge is converting existing gas pipelines from natural gas to hydrogen, says van Wijk.
Nevertheless, clean hydrogen faces a paradox in its business case. The potential volumes are in industry, while the potential profit margins are in transport. Energy-intensive industries are the biggest hydrogen consumers today. With Europe aiming for climate neutrality in 2050, there is growing interest in clean hydrogen from sectors such as steel and chemicals (over half of all the hydrogen worldwide is used in fertilizer production and oil refining). Yet these are also extremely price-sensitive industries exposed to global competition. Companies are not prepared to pay several times the ‘grey’ price for a climate-friendly alternative.
“There is a push from heavy industry to get green hydrogen into road transport so private car owners bear some of the early costs,” says Philipp Niessen, director for industry and innovation at ECF. “But we believe it will be a scarce resource and it makes more sense to grow demand in sectors such as heavy industry where there is no decarbonization alternative.”
“There is momentum for a political compromise around steel,” Niessen adds. The European steel industry is suffering from ageing assets, over-capacity and Chinese competition. “Public support for clean steel could help the European industry rebuild its assets, first to run on gas and from the mid-2030s, on clean hydrogen.” So far steel production is still coal-based.
Few believe that private cars will run on hydrogen in future. They are widely expected to go electric. Instead, trucks are the battleground. Truck makers such as Volvo and Daimler and logistics giants such as Deutsche Post DHL and Schenker told a conference in Brussels in February 2020 that for them, the future of freight is electric and for long haul, electric plus hydrogen. The advantage of electric trucks is that they are already available today, they said. In contrast, oil and gas suppliers argue that ‘low-carbon liquid fuels’, which increasingly means synthetic fuels or ‘e-fuels’ made from renewable hydrogen, are the way forward.
In practice, the Commission is considering mandating EU member states to roll out an electric charging infrastructure for trucks and blending quotas for sustainable fuels in aviation and shipping. Stakeholders agree that e-fuels are essential to decarbonize planes and ships in the long run. Along with heavy industry, emissions from these two sectors are the hardest and most expensive to abate.
Policy dependent
The emergence of a clean hydrogen economy depends on regulation (see Fig. 1 for distribution of policies in place mid-2019). “The biggest challenge is getting the right policies in place,” says van Wijk. “We need to build up a hydrogen infrastructure. That is a huge task that needs political support.” The first-ever European hydrogen strategy, released in July 2020 (ref. 6), aims to support the broader goal of ‘sector integration’. This originally meant using carbon-free power to help decarbonize other sectors, such as transport and industry. But it has become a broader bid to delineate roles for electricity and ‘molecules’ in the future energy system.
A new EU industrial strategy in March 2020 named the decarbonization of industry a ‘top priority’. “Industry has some of the longest-lived assets,” explains Matthias Deutsch, a senior associate and hydrogen expert at Agora Energiewende, a German think tank dedicated to the energytransition. “Production plants can run for 30–40 years. That means there will be investments in this decade that determine the climate footprint of industries in 2050. We need to give them a long-term outlook.
”There is another industrial dimension: Europe is the global leader in electrolysis technology. It has filed about twice as many patents and publications as its nearest competitors — the US, China and Japan — over the last 10–15 years7. “Electrolysers will become one of those critical technologies like solar, wind and batteries,” says Acke. “Europe has a competitive advantage and it can maintain it.” Nevertheless, there are those who already warn of strong competition from China.
The green hydrogen economy needs tailored support. “EU policy is trying to repeat the success story of renewables,” says Kakaras. “But there is a big difference: unlike solar and wind, green hydrogen production is driven by operational not capital expenditure. Eighty per cent of the cost depends on the electricity price.” Subsidies to promote large-scale deployment might bring down the cost of electrolysers, but this will not necessarily make green hydrogen production cheaper.
Kakaras explains: “you need an electricity price which is expensive enough to make renewable power viable and low enough to make the hydrogen produced from it competitive with gas.” In practice, it is not possible to do both, he adds. “Policymakers need to bridge the gap between the carbon-free fuel price and the gas price.” In practice, stakeholders are converging on the idea of Contracts for Difference for green hydrogen.
Eurogas, representing the European gas industry, wants policymakers to set targets for renewable and decarbonized gas and let the market decide what works best for a variety of end-uses. Other stakeholders such as Agora Energiewende and ECF believe that hydrogen support should reflect the need to prioritize specific sectors. It must, after all, remain supplementary to energy efficiency, renewables and direct electrification.
One of the most controversial questions is the use of hydrogen in residential heating. Hennig says: “even if you blend in only 20% hydrogen — and reduce CO2 by only 6.5% as a result — that is better than nothing. Especially if it is possible without adapting end-user appliances.” She argues that blending hydrogen into gas grids is essential to help ramp up clean hydrogen production and its transportation. Climate campaigners respond that houses should switch instead to more efficient heat pumps and district heating. Extending hydrogen to heating risks ‘supersizing’ Europe’s energy infrastructure8.
Renewables as game-changer
The biggest challenge to green hydrogen is that it will require vast amounts of renewable power. The IEA estimates that meeting today’s hydrogen demand through water electrolysis would require 3,600 TWh a year, or more than the EU’s entire annual electricity production2. Imagine its use extended from industrial feedstock to energy carrier in industry, transport, heating and power production.
Stakeholders agree that Europe could never produce enough renewable power to run a self-sufficient hydrogen economy. The Commission assumes there is scope for 1,000 GW of offshore wind in the North Sea, half of that dedicated to electrolysis1. But a study by Agora Energiewende also warns that the number of offshore wind turbines expected in the German section of the North Sea after 2030 risks reducing their full-load hours from 4,000–5,000 to just 3,000 (ref. 9).
From another perspective, hydrogen is increasingly seen as a way of bringing offshore wind to shore and relieving pressure on an already overloaded onshore grid. Some companies are exploring the possibility of building electrolysers right into the body of wind turbines. Green hydrogen gives renewables a business case when the electricity system on its own cannot. “Conversion to hydrogen is a kind of hedging for a renewables investor,” says Kakaras.
In reality, the hydrogen economy is an international project. Cross-border cooperation can ensure North Sea wind farms get enough space. Scale and economics dictate that Europe is likely to import green hydrogen from North Africa and the Middle East, and e-fuels from as far afield as Australia and Chile.
One of the biggest questions is whether enough green hydrogen can be ready fast enough to make a difference to climate change. Niessen says: “we live within the constraint of carbon budgets. Electrolysers are not microchips. Of course, costs will go down significantly, but will they go down fast enough to meet the Paris climate goals?”
Many believe that blue hydrogen — with appropriate climate safeguards — has a transitional role to play. It could help kick-off different sectoral uses and bring down prices through economies of scale. “Blue hydrogen could help speed up industrial transformation,” says Deutsch. “The worry is that if a lot of such low-carbon hydrogen becomes available, it may not be limited to the sectors that really need it.” Today, grey hydrogen costs around €1.50 kg–1, blue hydrogen €2–3 kg–1 and green hydrogen €3.50–6 kg–1. Consultants estimate that a €50–60 per tonne carbon price could make blue hydrogen competitive in Europe10.
“In my view, we get the system moving,” says van Wijk. “As demand for hydrogen grows and green hydrogen gets cheaper, it will supplement and replace this fossil-based hydrogen.” Japan, who invested in hydrogen long before climate neutrality was on the agenda, is working with its main supplier, Australia, to transition from grey to blue to green. “Green hydrogen will ultimately be cheaper than grey hydrogen because of very cheap power from wind and solar,” says van Wijk. “That is the game-changer.”
“If deep decarbonization is on the societal agenda, then hydrogen will come,” believes Kakaras. It is not about the laws of thermodynamics but whether society is willing to pay for climate neutrality. Michael Moore’s documentary Planet of the Humans suggests that ‘less is more’ is the only long-term answer to climate change. But the COVID-19 lockdowns demonstrated just how big an ask this is: emissions dropped dramatically but did little for climate change11.
There is an opportunity here, however. As Furfari puts it: “the Green Deal was an opportunity for politicians to spend public money. The COVID-19 crisis gives them license to spend as much as they want.”
Author: Sonja van Renssen, Freelance journalist, Brussels, Belgium.
e-mail: svr.envi@gmail.com
Published online: 27 August 2020 https://doi.org/10.1038/s41558-020-0891-0
References
1. A Clean Planet for all: A European Long-term Strategic Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy(European Commission, 2018).
2. The Future of Hydrogen (IEA, 2019).
3. Hydrogen Economy Outlook: Key Messages (Bloomberg L.P., 2020).
4. Europe’s moment: repair and prepare for the next generation. European Commission https://bit.ly/31vlPNz (2020).
5. A European Green Deal. European Commission https://bit.ly/ 3fCJIYL (2020).
6. A Hydrogen Strategy for a Climate-neutral Europe (European Commission, 2020).
7. Biebuyck, B. FCH-JU making hydrogen and fuel cells an everyday reality. Fuel Cells and Hydrogen Joint Undertakinghttps://bit.ly/3kgTJOE (2019).
8. Towards Fossil-Free Energy In 2050 (European Climate Foundation, 2019).
9. Making the Most of Offshore Winds: Re-evaluating the Potential of Offshore Wind in the German North Sea (Agora Energiewende, Agora Verkehrswende, Technical University of Denmark and Max-Planck-Institute for Biogeochemistry, 2020).
10. Peters, D. et al. Gas Decarbonisation Pathways 2020–2050: Gas for Climate (Guidehouse, 2020).
11. Le Quéré, C. et al. Nat. Clim. Change10, 647–653 (2020).
12. Methane Tracker 2020 (IEA, 2020).
Why Hydrogen is Critical to Combating Climate Change Part 2
Governments around the world are increasingly feeling the heat and are enacting ‘Net Zero’ emissions targets. The sense of urgency only seems to have been heightened by the pandemic. As part of its European Green Deal agenda, the European Union for example is targeting 55% emissions reductions by 2030 and net zero emissions (which will be enshrined by law) by 2050.
These targets are highly ambitious. Just phasing out fossil fuels and installing renewable energy like wind and solar will still leave us far away from reaching these goals, as the International Energy Agency has argued. Indeed, both the IEA and EU believe developing the hydrogen economy is critical to reaching Net Zero.
In our discussion with Professor Wijk we delve into why hydrogen holds so much promise for decarbonization, and why the Northern Netherlands is shaping up to be a strategic hub for the hydrogen economy and could become a role model region for other parts of the world. Due to its existing highly developed natural gas industry, the region already has the knowledge, infrastructure and industry off-takers to transition to the hydrogen economy relatively easily. It will also benefit from being connected to large future supplies of electricity from Norwegian hydro resources and Dutch and offshore wind farms.
Of course, there still major challenges to developing the hydrogen economy, with the most important being the cost of production. As we go into in greater depth, to overcome this will require large-scale infrastructure investment to bring down the cost of production, storage, and distribution via economies of scale.
Hear the full interview here:
If you would like to find out more about Professor Wijk’s work you can read his blog or find him on LinkedIn.
Dr. Indranil Ghosh
Podcast voor Eco-Runner Team Delft
In deze eerste aflevering van De Waterstofpodcast spreekt onze host, Sieb Rodenburg, met Ad van Wijk, hoogleraar Future Energy Systems aan de TU Delft, maar beter bekend als ‘de waterstofprofessor’. Ze praten over wat waterstof is, wat de geschiedenis ervan is, waar we het nu voor gebruiken en hoe we het maken. Ook bespreken ze een recent artikel van Ad van Wijk, dat breed opgepikt is in Brussel: A 2 x 40 GW initiative.
Luister direct op spotify via deze link: https://spoti.fi/33UDfpD
[English]
The podcast is live!
In this first episode of ‘De Waterstofpodcast’ our host, Sieb Rodenburg, speaks with Ad van Wijk, professor of Future Energy Systems at TU Delft, but better known as ‘the hydrogen professor’. They talk about what hydrogen is, what its history is, what we use it for now and how we make it. They also discuss a recent article by Ad van Wijk, widely picked up in Brussels: A 2 x 40 GW initiative.
Listen directly on spotify through this link: https://spoti.fi/33UDfpD
Deze Zutphenaar helpt heel ons land aan waterstof: ‘Echt niet alle huizen zijn over 10 jaar aardgasloos’
Nederland gaat in 2022 van het Groningse aardgas af. En dan maakt Gasunie-topman René Schutte (52) uit Zutphen het leidingnet stap voor stap klaar voor waterstof, de nieuwe en schone energie van de toekomst. ,,We kunnen dat.”
,,We hebben dat eerder gedaan”, zegt René Schutte. Dat was toen ‘we’ aan het aardgas gingen. Gasunie verandert van aardgasbedrijf in waterstofonderneming. Maar een koud kunstje is de ombouw nou ook weer niet, legt hij uit.
U bent ‘programmamanager waterstof’, u draait aan de waterstofknoppen in Nederland en bent architect van de energietransitie.
,,Nou, ik niet alleen. Gasunie gaat over de infrastructuur van het aardgasnet in Nederland en Noord-Duitsland. Dat loopt (hij laat een kaart zien) door tot en met Berlijn. Die leidingen kun je relatief eenvoudig geschikt maken voor waterstof. Voor die transitie heb je iedereen nodig.”
Als de Groningse aardgaskraan in 2022 dichtgaat moet Nederland aardgas inkopen, want voorlopig kunnen we nog niet zonder. De route naar alternatieve, duurzame energie duurt tot 2050.Je cookie instellingen zorgen ervoor dat deze inhoud niet getoond wordt. Pas je cookie instellingen hier aan.
,,Overstappen op waterstof gaat niet zomaar. Om heel veel redenen. Er moet nogal wat bij elkaar komen. De productie van waterstof, transport, opslag in zoutkoepels – want in de winter is er meer energievraag dan in de zomer en dan is het prettig dat je een voorraad hebt – en dan bij de eindgebruiker, bij u thuis of bij bedrijven. Je heb cv-ketels nodig die op waterstof werken en monteurs die die kunnen monteren… Dat moet allemaal tegelijk passen.”
Wat maakt u bij uitstek geschikt om de operatie ‘van aardgas naar waterstof’ te leiden?
,,Ik kan het hele waterstofverhaal uitleggen en verbinden. Dat is ook de rol van Gasunie, letterlijk en figuurlijk.”
Eurocommissaris Frans Timmermans noemt waterstof ‘de nieuwe rockster in energieland’. Als je het aardgasnet ombouwt naar waterstof, heb je maar een kwart van de kosten die je zou hebben als je alles nieuw moet aanleggen. Daar ligt volgens hem voor Nederland een enorme kans.
,,Zegt hij dat? Daar ben ik het wel mee eens. Mooie vergelijking, dat met die ‘rockster’. Dat klinkt swingend.”
Timmermans waarschuwt ook dat we vaart moeten maken met waterstof; nu loopt Europa technologisch nog voorop, maar ‘we moeten extra inzetten om voorop te blijven omdat de rest van de wereld snel langszij komt’.
,,Je ziet dat Europa de opvatting aanpast van ‘just in time’ naar ‘just in case’: kijk naar wat je zelf in huis wilt hebben. En daar hoort waterstof-technologie bij. De situatie door corona versterkt en voedt die opvatting. We hebben een klimaatuitdaging en daar wil Europa een voortrekkersrol in spelen. En vergis u niet, er gebeurt ook al heel veel.”
Hij vouwt een kaart uit met daarop 22 projecten waar Gasunie bemoeienis mee heeft. Op de Noordzee staan kolossale energie-eilanden ingetekend die met de stroom van zeewindparken waterstof gaan produceren. Via pijpleidingen rechtstreeks in het ‘aardgasnet’ van Gasunie.
In de Eemshaven figureert op de kaart van Schutte de grootste ‘groene waterstoffabriek’ van Europa die Gasunie samen met Shell en Groningen Seaport in de bouwplanning heeft staan. ‘Groen’ omdat de stroom voor de fabriek komt van wind op zee.
Als de overheid meewerkt zijn allebei, Noordzee en Eemshaven, klaar in 2030. Iets zuidelijker bij Zuidwending (Groningen) komt een opslag van waterstof in zoutcavernes. Links en rechts op de plattegrond staan elektrolysers die met elektriciteit waterstof produceren uit water. ,,En dat zijn dan alleen nog maar initiatieven waar wij bij zijn betrokken”, zegt Schutte.
Erg snel
,,Tata Steel, Shell, energiemaatschappij Engie, die hebben zelf ook allemaal projecten. De ontwikkelingen gaan erg snel. In het regeerakkoord kwam het woord waterstof nog niet eens voor. Drie jaar later, nota bene middenin coronatijd, omarmt de regering waterstof en ligt er een waterstofvisie.”
We moeten de leercurve goed bewaken. De knop in een keer omzetten voor het hele land is niet verstandigRené Schutte, program manager hydrogen bij Gasunie ziet een belangrijke rol voor waterstof maar waarschuwt voor te veel haast
In die visie trekken Gasunie en het ministerie van Economische Zaken samen op om het gasnet om te vormen en klaar te maken voor waterstof. René Schutte is projectleider van HyWay 27 die dat handen en voeten moet geven. Eind dit jaar moet hij zijn eerste verslag uitbrengen.
,,Vanaf 2022 komt een deel van de gasinfrastructuur beschikbaar omdat er dan geen Gronings gas meer door de leidingen stroomt. Ja, een tijdlang zal er nog buitenlands gas doorheen gaan, maar een deel kunnen we alvast schoonmaken, afsluitingen renoveren, het systeem up to date maken en dan kan er waterstof doorheen. De hele ombouw kost 1,5 tot 2 miljard euro. Dat is relatief heel weinig voor een operatie van die omvang. In die zin is ons gasnet inderdaad zoals Frans Timmermans zegt goud waard.”
Volgens ‘waterstofprofessor’ Ad van Wijk van de TU in Delft moet de overheid centrale regie nemen zodat waterstof ook echt een plek krijgt.
,,Daar heeft Ad gelijk in. Het waterstoflandschap in Nederland was nogal versnipperd. Iedereen deed wat. Die centrale regie begint er nu te komen. Er ligt een visie. Maar we hebben tijd nodig om te leren. Van aardgas weten we alles. Heeft u ooit van een aardgasstoring gehoord? Niemand maakt zich er zorgen over dat er bij de productie en transport, de hele logistiek tot en met de cv-ketel in huis iets mis kan gaan.
Die leveringszekerheid willen we bij waterstof ook. Maar het gaat wel over nieuwe systemen, nieuwe apparatuur en nieuwe opslag. Waterstof is ‘dunner’ dan aardgas en gedraagt zich anders. Natuurlijk kom je dan onderweg ‘iets’ tegen. De knop in een keer omzetten voor het hele land is niet verstandig. Je moet uitkijken dat je in een situatie terechtkomt die niet werkt. Dat is wat ik doe. Duwen, trekken, leren, stappen zetten, bij elkaar brengen…”
Iedereen moet er tegelijk klaar voor zijn?
,,Wij kunnen onze leidingen en de hele infrastructuur klaarmaken voor 2027, maar als er dan geen waterstof is of als niemand het gebruikt, heb je daar niets aan. Er moet voldoende massa, voldoende vraag en aanbod zijn. Je gaat niet voor één bedrijf alles aanpassen.”
Langs Zutphen lopen zes hoofdgasleidingen van Gasunie. U woont in Zutphen. Geeft dat wat thuisvoordeel?
Hij lacht. ,,Nou ja, zo’n gesprek gaat ’s avonds net iets gemakkelijker even tussendoor. Lokale waterstofinitiatieven – en die zijn er – weten mij te vinden. Ik vertel wat nodig is om het voor elkaar te krijgen. Ik draag ze een warm hart toe. Misschien kan ik er ook weer wat van leren.”
Als ik nu een nieuwe cv-ketel moet aanschaffen, wat raadt u dan aan?
,,Gewoon een nieuwe hr-ketel op aardgas of misschien een hybride ketel die je combineert met een warmtepomp. Het is echt niet zo dat over tien jaar alle 7, 8 miljoen huizen aardgasloos zijn. Kijk naar de levensduur van een ketel en je persoonlijke situatie. Maar dat zeg ik nu. Volgend jaar kan alles anders zijn. Ontwikkelingen gaan snel. Er zullen zich innovaties voordoen die we nu nog niet kunnen bedenken.”
Waterstofprofessor Ad van Wijk legt uit waarom waterstof dé oplossing is voor ons energieprobleem
Om waterstof te maken heb je elektriciteit nodig. Die splitst water in waterstof en zuurstof. Waterstof kun je verbranden, bijvoorbeeld in een cv-ketel, of weer omzetten in stroom. Belangrijk voordeel: je kunt waterstof ook opslaan en later gebruiken als je dat nodig hebt. Dat kan niet of veel moeilijker met stroom uit zon en wind.
Ons elektriciteitsnet kraakt en piept
nu al omdat die de toevloed aan energie uit zon en wind niet meer aankan. „En dan hebben we eigenlijk alleen nog maar naar de elektriciteitsvoorziening gekeken. Dat is 15 procent van de energie die we gebruiken. We moeten ook de warmtevoorziening, mobiliteit en industrie nog verduurzamen”, waarschuwt waterstofprofessor Ad van Wijk van de TU Delft.
De capaciteit van ons gasnet is 15 keer zo groot als die van het elektriciteitsnet
en de transportkosten zijn tot een factor 20 lager dan die van stroom. Dus dat loont al snel. Het allerbelangrijkste: het afval van waterstof is superschoon… water.
Haal waterstof uit de Sahara
Het is volgens Van Wijk een idee fixe om te denken dat Nederland alle benodigde duurzame energie zelf kan opwekken. Dat hoeft volgens hem ook niet. „Met waterstof kun je ook van elders energie importeren. Als je in de Sahara datzelfde zonnepaneel neerzet dat op je dak ligt, brengt dat drie keer zoveel op. Zelfs met transportkosten erbij ben je nog goedkoper uit.”
Dit artikel verscheen eerder op: https://www.destentor.nl/zutphen/deze-zutphenaar-helpt-heel-ons-land-aan-waterstof-echt-niet-alle-huizen-zijn-over-10-jaar-aardgasloos~ae5a9f7e/ (auteur: Lex van Kooten)
Chinese future tractor runs on hydrogen
The Chinese are now also getting involved in future tractors. With the new e-tractor named ET504-H they want to position themselves accordingly in the market. They also want to make agricultural machinery more environmentally friendly.
Sporting a futuristic appearance, the model ET504-H tractor adopts 5G mobile communication technology, has a self-driving mode, and can be remotely controlled. The future tractor is co-developed by Luoyang Research Institute for Intelligent Agricultural Equipment Co., Ltd. ( CHIAIC) and Luoyang advanced manufacturing industry R&D base of Tsinghua University’s Tianjin Research Institute for Advanced Equipment.
Tractor manufacturer YTO involved
The largest Chinese tractor manufacturer YTO is also involved in the development. Some parts of the prototype were manufactured by YTO. YTO says that CHIAIC will continue to pour efforts into developing new energy unmanned tractors, get ahead in such key technologies as unmanned driving and electric control, and create new energy unmanned equipment in the field of agricultural machinery.
Fully electric
The ET504_H tractor has a main permanent-magnet, synchronous mid-motor and independent electric lifting and steering motors. The hydrogen fuel cell operates when the tractor does not require its full power, while under heavy load, the lithium battery will add further power supply. The electric driveline can deliver 50 horsepower with a maximum speed of 30 kilometers per hour ( 18 miles per hour).
Unmanned cluster technology
The ET504-H tractor has been developed from the outset to be able to drive without a driver. For this purpose, the tractor relies on the 5G network from China Mobile and also uses GPS antenna, millimetre-wave radar and large data technology for remote control. This navigation technology can perceive the running state of the vehicle and surrounding working environment in real-time. It takes advantage of 5G features such as high speed, low delay and large connection volume, and combines them with intelligent unmanned cluster technology to effectively improve the reliability of agricultural machinery operations and provide consumers with higher quality services.
No clear market plan
“With this tractor we want to give local demonstrations to show that an autonomous tractor running on hydrogen is possible in farming practice”, says Huang Shengcao, Deputy General Manager of CHIAIC. “With this tractor we want to give local demonstrations to show that an autonomous tractor running on hydrogen is possible in farming practice”, says Huang Shengcao, Deputy General Manager of CHIAIC. ‘’The ET504-H tractor has now completed a series of trials in production and marketing. But due to current impact of the high battery cost, there is no clear sales plan yet. However, that can change quickly if the costs for the batteries drop.”
More hydrogen-powered tractors
Research has been conducted for some time into agricultural tractors that run on hydrogen with fuel cells. New Holland Agriculture released its first ever hydrogen-powered NH2 tractor in 2009, which was after then in service on farms in Europe by 2012. But due limited availability of the fuel and high production costs , it has never made it commercially viable.
This article first appeared on: https://www.farmingportal.co.za/index.php/agri-index/70-machinery/4951-chinese-future-tractor-runs-on-hydrogen
Green Leader Ad van Wijk over zijn jeugd, falen en de noodzaak van een waterstoftransitie
Ad van Wijk staat nu bekend als de waterstofprofessor van Nederland, maar de hoogleraar future energy systems aan de TU Delft maakte eerder naam als duurzaam ondernemer met Econcern. Dit duurzame energiebedrijf ging na een stormachtige groei failliet. Het leverde veel media-aandacht op. In de Green Leader podcast vertelt Van Wijk over deze periode. Welke lessen zijn daaruit te trekken? Ook brengt hij nieuws mee over de miljoenen die op Prinsjesdag naar waterstof gaan en benadrukt hij de economische noodzaak voor een waterstoftransitie.
Luister de podcast op: https://greenleaders.podigee.io/55-ad-van-wijk